Tailoring properties of microsphere-based poly(lactic-co-glycolic acid) scaffolds.

نویسندگان

  • Amanda Clark
  • Todd A Milbrandt
  • J Zach Hilt
  • David A Puleo
چکیده

Biodegradable polymer scaffolds are being extensively investigated for uses in tissue engineering because of their versatility in fabrication methods and range of achievable chemical and mechanical properties. In this study, poly(lactic-co-glycolic acid) (PLGA) was used to make various types of microspheres that were processed into porous scaffolds that possessed a wide range of properties. A heat sintering step was used to fuse microspheres together around porogen particles that were subsequently leached out, allowing for a 10-fold increase in mechanical properties over other PLGA scaffolds. The sintering temperature was based on the glass transition temperature that ranged from 43 to 49°C, which was low enough to enable drug loading. Degradation times were observed to be between 30 and 120 days, with an initial compressive modulus ranging from 10 to 100 MPa, and after 5 days of degradation up to 10 MPa was retained. These scaffolds were designed to allow for cell ingrowth, enable drug loading, and have an adjustable compressive modulus to be applicable for soft or hard tissue implants. This study combined well-established methods, such as double emulsion microspheres, polymer sintering, and salt leaching, to fabricate polymer scaffolds useful for different tissue engineering applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Overview of the Application of Poly(lactic-co-glycolic) Acid (PLGA)-Based Scaffold for Drug Delivery in Cartilage Tissue Engineering

Poly(lactic-co-glycolic) acid (PLGA) has attracted a considerable amount of interest for biomedical application due to its biocompatibility, tailored biodegradation rate (depending on the molecular weight and copolymer ratio), approval for clinical use in humans by the U.S. Food and Drug Administration (FDA), the potential to change surface properties to create better interaction with biologica...

متن کامل

Preparation of antibacterial electrospun Poly lactic-co–glycolic acid nanofibers containing Hypericum Perforatum with bedsore healing property and evaluation of its drug release performance

Skin drug delivery systems with controlled release are suitable means for the local transfer of pharmaceutical compounds to the damaged and healthy layers of skin. Nanofibrous membrane prepares uniform moisture in the wound environment with less accumulation of fluid secretion due to its variable pore size. Electrospinning takes advantage of using herbal extracts in the form of electrospun nano...

متن کامل

Preparation of antibacterial electrospun Poly lactic-co–glycolic acid nanofibers containing Hypericum Perforatum with bedsore healing property and evaluation of its drug release performance

Skin drug delivery systems with controlled release are suitable means for the local transfer of pharmaceutical compounds to the damaged and healthy layers of skin. Nanofibrous membrane prepares uniform moisture in the wound environment with less accumulation of fluid secretion due to its variable pore size. Electrospinning takes advantage of using herbal extracts in the form of electrospun nano...

متن کامل

Human endothelial cell growth and gene expression on three dimensional poly(lactic acid-co-glycolic acid) sintered microsphere scaffolds for bone tissue engineering

Bone tissue engineering offers promising alternatives to repair and restore orthopaedic disorders. Our laboratory has employed poly(lactic acid-co-glycolic acid) (PLAGA) microspheres to develop a three dimensional (3-D) porous bioresorbable scaffold with a pore structure similar to the structure of human trabecular bone. The success of osseous healing and integration of the engineered implants ...

متن کامل

Microsphere-based bioresorbable structures loaded with proteins for tissue regeneration applications.

Novel bioresorbable fiber/microsphere composite structures loaded with proteins were developed and studied. These unique polymeric structures are designed to combine good mechanical properties with a desired controlled protein-release profile, in order to serve as scaffolds for tissue regeneration applications. The composite fiber structures were formed by "coating" poly(L-lactic acid) fibers w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 102 2  شماره 

صفحات  -

تاریخ انتشار 2014